From subthreshold to firing-rate resonance.
نویسندگان
چکیده
Many types of neurons exhibit subthreshold resonance. However, little is known about whether this frequency preference influences spike emission. Here, the link between subthreshold resonance and firing rate is examined in the framework of conductance-based models. A classification of the subthreshold properties of a general class of neurons is first provided. In particular, a class of neurons is identified in which the input impedance exhibits a suppression at a nonzero low frequency as well as a peak at higher frequency. The analysis is then extended to the effect of subthreshold resonance on the dynamics of the firing rate. The considered input current comprises a background noise term, mimicking the massive synaptic bombardment in vivo. Of interest is the modulatory effect an additional weak oscillating current has on the instantaneous firing rate. When the noise is weak and firing regular, the frequency most preferentially modulated is the firing rate itself. Conversely, when the noise is strong and firing irregular, the modulation is strongest at the subthreshold resonance frequency. These results are demonstrated for two specific conductance-based models and for a generalization of the integrate-and-fire model that captures subthreshold resonance. They suggest that resonant neurons are able to communicate their frequency preference to postsynaptic targets when the level of noise is comparable to that prevailing in vivo.
منابع مشابه
Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance.
Neurons that exhibit a peak at finite frequency in their membrane potential response to oscillatory inputs are widespread in the nervous system. However, the influence of this subthreshold resonance on spiking properties has not yet been thoroughly analyzed. To this end, generalized integrate-and-fire models are introduced that reproduce at the linear level the subthreshold behavior of any give...
متن کاملThe ionic mechanism of gamma resonance in rat striatal fast-spiking neurons.
Striatal fast-spiking (FS) cells in slices fire in the gamma frequency range and in vivo are often phase-locked to gamma oscillations in the field potential. We studied the firing patterns of these cells in slices from rats ages 16-23 days to determine the mechanism of their gamma resonance. The resonance of striatal FS cells was manifested as a minimum frequency for repetitive firing. At rheob...
متن کاملAutonomous stochastic resonance in bursting neurons
Noise-induced firing is studied in two major classes of bursting neuron models in the absence of periodic input. In the biologically relevant subthreshold regime where no deterministic firing occurs, additive noise induces spiking limit cycles. This noise makes the output firing patterns sensitive to the characteristics of autonomous subthreshold oscillations, which can change in response to va...
متن کاملCompetition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.
Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as ape...
متن کاملStochastic Resonance in Thalamic Neurons and Resonant Neuron Models
Neurons of the thalamus are major participants in gating sensory information for relay to the neocortex. Thalamic neurons are crucially involved in rhythmogenesis which determines the sleep/wake cycle. These roles require critical involvement of a T-type calcium current, conferring a frequency preference in response to subthreshold signals. We examine the interactions of this membrane resonance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 89 5 شماره
صفحات -
تاریخ انتشار 2003